LOYOLA CO	OLLEO	GE (AUTO	NOMOU	S), CHE	NNAI – 600 034		
М.	Sc. DE	GREE EXA	MINATIO	N – STAT I	ISTICS		
t	SECC	ND SEMES	STER – AP	RIL 2014	ł		
ST ST	2817	- CATEGOI	RICAL DA	TA ANAL	YSIS		
Date : 05/04/2014 Time : 09:00-12:00	De	ept. No.			Max. : 100 Marks		
		SECT					
Answer ALL the following qu	lestions	<u>SECT</u>	<u>ION – A</u>	(<u>10 x</u>	2 = 20 marks)		
 Distinguish between 'in What is 'overdispersion Illustrate with a numer association in opposite Give the sample version Define 'Sensitivity' and State any two properties State the amended estin Define 'Deviance' for Give the motivation fo Explain 'Baseline Cate Answer any FIVE questions	n'? Give ical exan directio of 'Relati l 'Specifi es of Yul mator of a Genera r Probit	a situation wh nple how two ns. ve Risk' (explai icity' in predic le's Q coeffici odds ratio wh alized Linear I models gits' for nomi	nere it occurs values of 'C ning the nota trive diagnos ent. nen there are Model (GLM	s. Odds Ratio' ations) and st stics. e zero cell fr A). e variables.	represent the same strength of tate its properties.		
11. Suppose that $P(Y_i = 1 $				e Bernoulli a	and π_i are independent from a nditionally, but not conditionally		
12. Derive the Score Test	12. Derive the Score Test and Score Confidence Interval for the Poisson parameter.						
13. Discuss with examples: Case- Control study, Cohort study and Clinical Trials.							
•	(1,2) to	300 patients.	Investigate	marginal an	failure) of treatments X (A, B) d conditional independence of		
	Clinic	Treatment	Outcome Success	Outcome Failure			
	1	А	54	36	-		
	1	В	36	24	1		
	2	А	6	24			
	2	В	24	96			
15. Apply the 'Delta' Method					og odds ratio. [cont'd] a binary logit model involving		

score										
DV	1	1	0	1	0	0	1	1	1	0
Logit	27.36	33.84	36.48	6.45	-4.41	8.98	18.21	38.4	40.02	4.29
score										

Construct the 'Gains Table' and compute the KS statistic for the model.

17. The following is a cross-tabulation of performance (X) in a PG program of a university and the positions/ job(Y) they were placed. Carry out the 'Linear Trend Analysis' with one-sided alternative by scoring X as 80, 65, 55 and Y as 1,2,3.

Position / Job (Y)							
College Grade (X)	Data-Entry Operator	Analyst	Team- Head				
Distinction	18	30	36				
I Class	42	57	30				
II Class	73	48	12				

18. Develop the 'continuation ratio logit' for an ordinal response variable. Present the flow-chart for classification of response-category membership.

SECTION - C

Answer any TWO questions

 $(2 \times 20 = 40 \text{ marks})$

19. (a) Discuss the Fisher-Rao Score test for real parameter case and multi-parameter case in a general setting.

(b) A sample of 300 washing machines of a particular brand were classified according to whether they suffered a primary mechanical failure within 90 days of installation. Machines that failed were also classified according to whether they got a secondary failure within four weeks after the first failure. Machines that did not suffer the mechanical failure cannot suffer the secondary failure. That is, no observations can fall in the category for "No" primary failure & "Yes" secondary failure (a *structural zero*). The data are summarized below:

Secondary Failure

Primary		Yes	No	
Failure	Yes	58	125	
	No		117	[cont'd]
The objective was to test whether the				probability of primary failure was the same as

the conditional probability of secondary failure given that the machine suffered the primary failure. With appropriate parametrization, formulate the hypothesis and carry out the test. (4 + 16)

20. The following table contains the data from a survey conducted to assess the opinion of people belonging to different economic strata to a proposal of the city municipal body to build a recreation facility in a residential neighbourhood:

Economic Strate	um Support to	N Support to N	Jeutral to	
	Proposal	Proposal Pr	roposal	Proposal
Low Income	81	81	33	112
Middle Income	105	105	60	48
High Income	54	54	30	17

(a) Compute 'Goodman and Kruskal' Gamma coefficient and interpret the result.

(b) Test the hypothesis of independence between economic strata and opinion by the Likelihood Ratio G^2 Statistic. (8 + 12)

21. (a) I x J tables, show that the odds ratio for rows a & b (a < b) and columns c & d (c < d) can be obtained from '*local odds ratios*'.
(b) Develop the Likelihood equations for a GLM and obtain an expression for the

(b) Develop the Likelihood equations for a GLM and obtain an expression for the asymptotic var-cov matrix of the MLEs. (8 + 12)

22. (a) Develop the adjacent-categories logits for an ordinal response variable. Explain how the probabilities for the different response categories are estimated.

(b) In a study on academic performance with response categories 1 - Outstanding, 2 - Good, 3 - Average, 4 - Poor, the predictor variables were taken to be the following: $X_1 - \text{No. of Siblings}$, $X_2 - 1$ if High Income group, 0 otherwise.

The proportional odds model fitted gave the following cumulativelogits:

Log
$$\frac{p_1}{p_{234}} = -0.842 - 0.55 * X_1 + 1.794 * X_2$$

Log $\frac{p_{12}}{p_{34}} = 1.568 - 0.55 * X_1 + 1.794 * X_2$
Log $\frac{p_{123}}{p_4} = 2.041 - 0.55 * X_1 + 1.794 * X_2$

Compute the probabilities for the performance levels for the following categories of persons: (i) High Income group with $X_1 = 1$; (ii) Middle income group with $X_1 = 3$; (iii) Low income group with $X_1 = 6$. (8 +12)